
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)
Volume 1, Issue 4, December 2010

324

 Security Constraints for Sequence Diagram and

Code Generation

Abdeslam Jakimi
1,2

 and Mohammed Elkoutbi
1

1Mohammed V University, SIME, ENSIAS, Rabat, Morocco ,

2My Ismail University, FSTE, B.P 509, Boutalamin, Errachidia, Morocco

{ajakim@yahoo.fr}

Abstract: The Unified Modeling Language, which has become a

standard notation for object-oriented modeling, provides a suitable

framework for scenario acquisition using use case diagrams and

sequence diagrams. A sequence diagrams shows the interactions

among the objects participating in a scenario in temporal order. It

depicts the objects by their lifelines and shows the messages they

exchange in time sequence. In this paper, we suggest to offer the

extension of scenarios that describe a given system in a natural way

based directly on sequence diagrams. We developed algorithm and

tool support that can automatically produce a code of sequence

diagram with security constraints.

Keywords: UML, sequence diagrams, security constraints, code

generation.

1. Introduction

The Unified Modeling Language (UML) [1,2,3] is an

expressive language that can be used for problem

conceptualization, software system specification as well as

implementation. UML is a graphical language for specifying

the analysis and design of object-oriented software systems

[2]. It provides several diagram types that can be used to

view and model the software system from different

perspectives and/or at different levels of abstraction. UML

defines thirteen types of graphical diagrams. The four

diagrams which become important in the design phase are a

class diagram, use case diagram, state chart diagram and

sequence diagram.

The emergence of UML as a standard for modeling systems

has encouraged the use of automated software tools that

facilitate the development process from analysis through

coding. In UML, the static structure of classes in a system is

represented by a class diagram while the dynamic behavior of

the classes is represented by a set of usecase, sequence and

statechart diagrams. To facilitate the software development

process, it would be ideal to have tools that automatically

generate or help to generate executable code from the

models.

In the present study, an effort has been made to find methods

to automatically generate executable security code from the

UML sequence diagram. We propose to extend the UML

with the following message constraints: security constraints.

2. Scenarios and UML

2.1. Scenarios

Scenarios have been evolved according to several aspects,

and their interpretation seems to depend on the context of use

and the way in which they were acquired or generated. In a

survey, Rolland [4] proposed a framework for the

classification of scenarios according to four aspects: the

form, contents, the goal and the cycle of development

The form view deals with the expression mode of a scenario.

Are scenarios formally or informally described, in a static,

animated or interactive form?

The contents view concerns the kind of knowledge which is

expressed in a scenario. Scenarios can, for instance, focus on

the description of the system functionality or they can

describe a broader view in which the functionality is

embedded into a larger business process with various

stakeholders and resources bound to it.

The purpose view is used to capture the role that a scenario is

aiming to play in the requirement’s engineering process.

Describing the functionality of a system, exploring design

alternatives or explaining drawbacks or inefficiencies of a

system are examples of roles that can be assigned to a

scenario.

The lifecycle view considers scenarios as artefacts existing

and evolving in time through the execution of operations

during the requirement’s engineering process. Creation,

refinement or deletion are examples of such operations.

2.2. Scenarios in UML

Object-oriented analysis and design methods offer a good

framework for scenarios. In our work, we have adopted the

UML, which is a unified notation for Object-oriented

analysis and design. It directly unifies the methods of Booch,

Rumbaugh and Jacobson.

Scenarios and use cases have been used interchangeably in

several works meaning partial descriptions. UML

distinguishes between these terms and gives them a more

precise definition. A use case is a generic description of an

entire transaction involving several objects of the system. A

use case diagram is more concerned with the interaction

between the system and actors (objects outside the system

that interact directly with it). It presents a collection of use

cases and their corresponding external actors. A scenario

shows a particular series of interactions among objects in a

single execution of a use case of a system (execution instance

of a use case). A scenario is defined as an instance of a given

use case. Scenarios can be viewed in two different ways

through sequence diagrams or communication diagrams.

Both types of diagrams rely on the same underlying

semantics. Conversion from one to the other is possible.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)
Volume 1, Issue 4, December 2010

325

2.2.1 Class diagram

A class diagram is a graphic view of the static structural

model. It shows a set of classes, interfaces and their

relationships. The main focus is on the description of the

classes. Class diagrams are important for constructing

systems through forward engineering. The ClassD is the

central diagram of a UML model. The translation of class

diagrams to an Object-oriented programming language is

easy and provided by most CASE tools.

2.2.2 Sequence diagram

For our work, we chose to use sequence diagrams because of

their wide use in different domains. A sequence diagram

shows interactions among a set of objects in temporal order,

which is good for understanding timing and interaction

issues. It depicts the objects by their lifelines and shows the

messages they exchange in time sequence. However, it does

not capture the associations among the objects.

A sequence diagrams has two dimensions: the vertical

dimension represents the time, and the horizontal dimension

represents the objects. Messages are shown as horizontal

solid arrows from the lifeline of the object sender to the

lifeline of the object receiver (Figure 2). A message may be

guarded by a condition, annotated by iteration or concurrency

information, and/or constrained by an expression. Each

message can be labeled by a sequence number representing

the nested procedural calling sequence throughout the

scenario, and the message signature. Sequence numbers

contain a list of sequence elements separated by dots.

Figure 2. Example of a SequenceD.

2.2.3 Constraints for sequence diagram

UML defines two standard constraints for messages: vote and

broadcast. The vote constraint restricts a collection of return

messages, and the broadcast constraint specifies that the

constrained messages are not invoked in any particular order.

Beyond the UML standard message constraints found in

sequence diagrams, elkoutbi et al. [5,6] define the two

additional constraints input Data and output Data. The input

Data constraint indicates that the corresponding message

holds input information from the user. The outputData

constraint specifies that the corresponding message carries

information for display. Both input Data and output Data

constraints have a parameter that indicates the kind of user

action. This parameter normally represents the dependency

between the message and the elements of the underlying class

diagram.

3. Description of the Approach

In this section, we describe the overall approach to add

security constraints and generate code from scenarios

(sequence diagram). The approach consists of three activities

(see Figure 3), which are detailed below:

 Figure 3. Overview of the proposed process

In the Requirements Acquisition activity, the analyst

elaborates the UsecaseD, and for each use case, he or she

elaborates several SequenceDs corresponding to the

scenarios of the use case at hand.

The Security Constraints activity consists of extending

interaction diagrams. We propose to extend the UML with

the following message constraints: security constraints.

 In the User interface prototype and code generation activity,

we generate code from a sequence diagram and derive user

interface prototypes for all the interface objects found in the

system.

In the following, we will discuss these activities of the

proposed process.

3.1 Security constraints for sequence diagram

Today, security has become a major issue for information

systems (e-business, e-trade, etc). It will be convenient to be

able to define and represent these constraints in the step of

requirement engineering. We were interested in the major

security aspects: authenticity and confidentiality. Authenticity

means the proof of identity and confidentiality relates to the

privacy of information. Using UML, when a message is sent

from a source to a target object, it can carry some

information (message parameters). We aim to express that

the exchange is private using some encryption algorithms

(RSA, AES, 3DES, etc). This can be specified as a parameter

of the constraint. The two constraints defined to model

Acteur1

Object 1

m1

Object 2

m2

m3

m4

m5

Requirements

acquisition

Security constraints

from scenarios

User interface and

code generation

A
c
t
e
u
r
1

O
b
j
e
t

1

m
1

O
b
j
e
t

2

m
2
m
3

m
4

m
5

A
c
t
e
u
r
1

O
b
j
e
t

1

m
1

O
b
j
e
t

2

m
2
m
3

m
4

m
5

ClassD

 UseCaseD

SequenceDs

Interface

usager

Code

generation

m1:crypter(DES)

Acte
ur1

O1 O2 O3

m2: signer(MD5)

m6: message signer(RSA)

&crypter(RSA))

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)
Volume 1, Issue 4, December 2010

326

security aspects are given below:

m{Auth}: The message m must be signed by the sender

object to proof its identity to the receiver object.

m{Crypt(algo)}: The message content (message parameters)

must be encrypted using the algorithm (algo).

Figures 4 give an example a sequence diagram with security

constraints for ATM (Automatic Teller Machine)

Figure 4. Sequence diagram with security constraints

3.2 Code generation

UML and Java [7], which is an OO model and design

notation and an OO programming language respectively, are

some of the tools widely used in many software development

projects. However, these modeling and programming

activities are mostly separated. And a gap exists between

these models and programs.

This paper proposes an approach to narrow the gap between

multiple UML models and an implemented system. The

narrowing of a gap is achieved by generating Java source

code directly from multiple UML model diagrams. The code

generation is achieved by creating a mapping between UML

and the Java programming language.

Many current OO CASE tools [8, 9, 10, 11, 12,13] generate

limited skeleton code from such models. The main drawback

of this approach is that there is no code generation for object

behavior and thus the code generated is not complete. Chow

et al. [14] developed two main steps in translating code from

dynamic behaviour of the system. Translate an object's state

diagram into Java code and Generate method body based on

the pre/post condition of an operation and specify the order

of language statements based on the message passing

sequence in the interaction diagram. Jakimi et al. [15]

generated automatically implementation code from the UML

sequence diagrams in an object-oriented programming

language such as Java.

The generation of Java code from the UML sequence

diagram has been met with some degree of success. In

addition to the generation of skeleton class code from class

diagram, Java codes have been generated from the statechart,

the sequence diagram and the component diagram. However,

generation of Java source code from all UML diagrams is not

yet achievable.

Figure 5 presents the types of the security constraints which

we can associate an exchange of messages between the

objects.

Simple message

Encrypted message

Encrypted and signed message

Signed message

Figure 5. Sequence diagram with type’s security constraints

The code generated relating to the diagram of figure 5 is

arising according to the type of message sent (simple, signed,

encrypted or signed and encrypted). The code generated by

this approach for the figure 6 is:

class mySystem {

 public void service(){

 // simple message

 Object2.m1();

 //encrypted messageé

 Object2.m2(encrypted(DES/RSA));

 // signed message

 Object2.m3(signed(MD5/RSA));

 //signed/encrypted message

 Object2.m3(signeg(RSA) & encrypted(RSA)));

 }

}

Figure 6. Code generation from figure 5

3.3 Tool support

For create the tool support for code generated from the

sequence diagram with security constraints. We have used

the Eclipse environment, the TogetherJ plug-in for UML

modeling and the application programming interface (API)

JDOM for XML manipulation.

We used the plug-in for UML diagrams (from Together)

which makes it possible for us to create sequence diagrams.

This diagram is first acquired to throw the UML diagram

plug-in, and then there is transformed in form XML files.

1: simple message

2: encrypted message (DES)

3: signed message (RSA) & encrypted (RSA))

Object1 Object2

4: signed message (RSA) Select_op{inputData

(Transaction.kind)}}

Confirm {inputData

(ATM.Select_op)}

Check{Crypt(RSA),

Auth(RSA)}

Pin_ok{Auth(RSA)}

Card_ok{Auth(RSA)}

Enter_pin {inpuData

(Account.password),

Crypt(RSA)}}
 Connect r{Crypt

(RSA), Auth(RSA)}

Insert_card {inputData

(ATM.Insert_card), Auth(RSA)}) }

:Customer :ATM :Bank :Account

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)
Volume 1, Issue 4, December 2010

327

This XML file can also be imported via the UML diagram

plug-in for purposes of visualization and annotation. Finally

we develop a code generator for automatic Java code security

generation from sequence diagram.

4. Conclusion

In conclusion, we have proposed in this paper an UML-based

code generation approach. In this work, we have presented a

new approach that produces automatically code from the

sequence diagram with security constraints. This approach

helps developers to transit from the design to implementation

phase and to shorten the software development cycle.

The future works of this research include the following areas:

generate code from UML diagrams that describe dynamic

and non-functional aspects of a system while remaining

platform independent and optimize generated code, find a

rigorous method to lower the abstraction level.

References

[1] Object Management Group (OMG), Unified Modeling

Language (UML) specifications version 1.5, 2003.

http://www.omg.org/

[2] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified

Modeling Language: User Guide”, Massachusetts:

Addison-Wesley, 1999.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, “The Unified

Modeling Language: Reference Manual Guide”,

Massachusetts: Addison-Wesley, 1999.

[4] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A.

Sutcliffe, N.A.M. Maiden, M. Jarke, P. Haumer, K.

Pohl, E. Dubois and P. Heymans. “A Proposal for a

Scenario Classification Framework”. The Requirements

Engineering Journal, Volume 3, Number 1, 1998.

[5] M. Bennani., M. Elkoutbi., and K. Nafil; Modelling

Real-time Aspects using UML Scenarios proceedings of

the 3rd International Conference on Software

Methodologies, Tools and Techniques, pp. 200-213,

Leipzig, Germany, September 2004.

[6] M. Elkoutbi, Khriss I., R.K. Keller. “Automated

Prototyping of User Interfaces Based on UML

Scenarios”. The Automated Software Engineering

Journal, 13, 5-40, 2006.

[7] Sun Microsystems Inc., Java Technology,

http://java.sun.com

[8] J. Ali, and J. Tanaka, “Converting Statecharts into Java

Code”, in Proc. IDPT’00, Dallas, Texas, USA, 2000.

[9] I-Logix Inc., Rhapsody, http://www.ilogix.com.

[10] D. Harel, and E. Grey, “Executable Object Modeling

with Statecharts”, in Proc. of 18th Inter. Conf. on

Software Engineering, IEEE, March 1996, pp. 246-257.

[11] D. Harel, and E. Grey, “Executable Object Modeling

with Statecharts”,Computer, vol. 30, no. 7, 1997, pp.

31-42.

[12] I. Azim Niaz and J. Tanaka, An Object-Oriented

Approach To Generate Java Code From UML

Statecharts, International Journal of Computer &

Information Science, Vol. 6, No. 2, June 2005

[13] J. Ali, and J. Tanaka, “Implementing the Dynamic

Behavior Represented as Multiple State Diagrams and

Activity Diagrams”, Journal of Computer Science &

Information Management , vol. 2, no. 1, 2001, pp.

[14] K.O. Chow, W. Jia, V.C.P. Chan and J. Cao,

Modelbased generation of Java code, Proc.

International Conf. on Parallel and Distributed

Processing Techniques and Applications (PDPTA

2000), Las Vegas, USA, 2000.

[15] A. Jakimi and M. El Koutbi, “An Object-Oriented

Approach to UML Scenarios Engineering and Code

Generation” International Journal of Computer Theory

and Engineering , vol.1, No 1, pp 35-41, April 2009.

Author Biographies

Abdeslam Jakimi is a professor at Faculty of Science and technology in

myIismail University, he received his Masters degree in software

engineering in 2004. His current research interests include requirements

engineering, user interface prototyping, design transformations, scenario

engineering and code generation.

Mohammed Elkoutbi is a professor at National School of Computer and

Systems Analysis in Agdal, Rabat, Morocco. His current research interests

include requirements engineering, user interface prototyping and design,

and formal methods in analysis and design. He earned a PhD in Computer

Science from University of Montreal in 2000.

http://www.ilogix.com/

